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Abstract

We examine the problem of error control and element shape quality maintenance
during adaptive re�nement/coarsening simulations and with deforming �nite elements.
Of particular interest are large deformation Lagrangian simulations of impact but the
ideas are more broadly applicable. Two key questions are considered: (1) the control
of the error in the numerical solution by means of adaptive re�nement and coarsening
guided by appropriate error indicators, and (2) the control of shape degradation of the
elements as the grid deforms. In both Eulerian and Lagrangian simulations, element
size and shape can seriously impact the timestep size. Indicators for error and shape
control are discussed and the ideas are tested in exploratory simulations for impact
problems using representative explicit codes.

1 Introduction

There have been numerous theoretical and algorithmic studies directed to the various as-
pects of mesh optimization in �nite element analysis. These include development of error
indicators in order to guide mesh re�nement/coarsening, algorithms for adding points, sub-
dividing elements, faces or edges, as well as studies involving the underlying data structure.
Also, there is an interest in node redistribution and moving grid techniques, particularly for
problems with evolving domains. Indeed, the possible distortion of elements imply several
associated problems such as mesh tangling and element degeneracy, which may a�ect accu-
racy or simply cause failure of the numerical scheme. More recently these ideas have been
merging since algorithms that support simultaneous re�nement and coarsening can be viewed
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as a type of redistribution strategy, the main distinction having to do with the supporting
data structure approaches. For an overview of some of these aspects, we refer to the com-
prehensive discussion in [15]. For details on grid generation, see for example [20, 26, 44, 46]
and on analysis of error indicators, see [1, 3{7, 18, 22, 27, 28].

One issue, which is increasingly raised, is how to assess the quality of a given mesh,
especially when performing automatic adaptive re�nement. Mesh adaption schemes may
produce slender elements, with small and large angles, particularly in the case of moving
grids. Re�nement to smaller elements and element degeneracy usually alters the performance
of time-discretization schemes. In order to satisfy stability conditions in the explicit schemes
considered later the integration timestep may become extremely small as elements approach
a degenerate sliver or point. This may be a problem even in regions where the solution
gradients are not so large, so accuracy may not be an issue, although such elements are not
recommended in practice for reasons of ill conditioning. In the present work, we consider
the possibility of controlling both the approximation error and the element shape quality.

A number of mesh quality indicators have been suggested in the literature, mainly on
the basis of intuitive geometric reasoning. There are also approaches that appeal more
to the mapping properties and the Jacobian of the transformations between the reference
element and the element in the physical domain. These actually relate to the geometry
itself since the integral of the Jacobian determinant on the element provides a measure of
the element volume. Also, we will show that the mapping from the reference element and
its inverse arise naturally from interpolation theory in the a priori error estimates of �nite
element approximations, and, in our opinion, this latter argument provides a logical basis
for developing suitable classes of element quality indicators. This is the starting point in
the present work and we remark that this approach has also been undertaken in a recent
work [25] where the condition number of the Jacobian matrix is studied as a quality indicator
to be used in various objective functions for grid smoothing.

One other objective in this project is to explore the applicability of di�erent types of error
indicators when access to the software kernels or the physics models is rather limited. We
have in mind here legacy codes or large proprietary software systems, for which stand alone
modules can only be interfaced with the proprietary code. More speci�cally, an infrastructure
capable of supporting dynamic creation and deletion of elements and nodes as well accuracy
or reliability assessment is required. The test codes for our work described later are the
Lagrangian EPIC code (Elasto-Plastic Impact Calculations) and the Eulerian CTH code,
which are representative of codes for this class of impact problems. While the literature on
computational impact simulations is rather vast [2,11], the use of solution adaptive meshing
for these problems is relatively recent [14, 19, 36].

A major goal of this research activity is to develop an eÆcient adaptive method which
would dramatically improve simulations of impact but the ideas are obviously of more general
interest. Central to our success is the use of e�ective re�nement and shape quality indicators
with adaption strategies, as well as the development of a supporting software infrastructure.
One of the developments arising from our exploratory studies is the design of hybrid error
indicators which may be used to control both the numerical error and element shape quality.
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Our treatment of the error due to mesh distortion as the geometry changes makes the
algorithm much more robust for Lagrangian computations for high velocity impact with
EPIC. Likewise, in our Eulerian simulations with CTH, we consider a restricted class of
adaptive re�nement/coarsening strategies based on 2:1 block subdomain re�nement.

The outline of the report is as follows. In Section 2, we discuss basic interpolation
estimates, a residual error estimate for an explicit time discretization scheme, a representative
ux jump indicator and a ux/stress post-processing recovery indicator. In Section 3, we
consider the question of shape quality error indicators both for Eulerian and Lagrangian
calculations as well as transient applications with general remarks on the hybrid indicators
and software issues. Next, in Section 4, we investigate additive and multiplicative hybrid
indicators that are tested in impact simulations. We emphasize that the discussion here is not
meant to be comprehensive. Instead it describes some representative ideas and exploratory
simulations of impact using these concepts.

2 Error Estimation and Error Indicators

Solution adaptive meshing implies the selection of adequate error measures so as to prop-
erly assess the quality of numerical approximations. A satisfactory measure is essential for
constructing new meshes that will better meet the goals of the analyst. There has been a
large amount of research on developing such error estimators (e.g. see [1, 29, 47]). However,
relatively few studies have been directed towards error estimation for transient non-linear
problems like the impact problem considered here. Of particular interest are estimators that
could be easily integrated into the explicit time integration schemes widely used in nonlinear
transient impact simulations. We recall that the other objective is to design a criterion to
avoid creating ill-shaped elements as the mesh is repeatedly re�ned or deforms.

There exist numerous studies of error indicators for adaptive element re�nement or node
redistribution. The earliest work used the element residuals as error indicators [3{5]. Later
works focussed on interpolation estimates [18] or on residual estimates based on solving local
boundary value problems [1, 6, 7, 22, 27, 28], not to mention the patch-recovery technique
involving superconvergence properties of the �nite element discretizations [43, 51{53]. A
more recent approach is the so-called goal-oriented error estimation and adaptation [10, 33,
37, 38, 41, 42, 49] which controls the error in terms of quantities of interest.

One major issue in practical applications involving either legacy codes or large scale pro-
prietary systems is the fact that there may be limited access to the software kernels. Nev-
ertheless, it is usually possible to add a new module that would compute an error indicator
only using the computed solution and the corresponding mesh at a given time step. However,
residual type error indicators generally necessitate more detailed knowledge of the constitu-
tive models and physics, as well as the numerical schemes or algorithms being implemented.
For these reasons, we will focus in this project on less invasive recovery indicators.

We �rst introduce some classical interpolation error estimates as they will be employed
several times in this report. We then present a methodology to compute error estimates
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Figure 1: Reference triangle bT and its image T in the physical domain.

based on residuals for a time-dependent model problem. The results of the analysis will
justify the use of ux-jump based or patch-recovery indicators reviewed at the end of this
section.

2.1 Interpolation Estimates

For convenience, let us consider here the case of an arbitrary triangle in the mesh which is
mapped by an aÆne mapping from the reference right isosceles triangle [9]:bT = f� = (�; �) : � � 0; � � 0; and 1� � � � � 0g: (2.1)

The aÆne map is de�ned as:

F : � 2 bT �! x = B� + x0 2 T

such that
F (�1) = x1; F (�2) = x2; F (�3) = x3:

where �i and xi, i = 1; 2; 3, denote the coordinates of the vertices on the reference elementbT and on its image T respectively (see Fig. 1). We note that the entries of the matrix B are
actually given by

B =

�
(x2 � x1) (x3 � x1)
(y2 � y1) (y3 � y1)

�
: (2.2)

Let v be an arbitrary function de�ned on T and I the standard nodal interpolation
operator; i.e. Iv is linear and

Iv(x1) = v(x1); Iv(x2) = v(x2); Iv(x3) = v(x3):

Using standard de�nitions of the norms [34], we now state classical lemmas on properties
of the interpolation error [13, 21]:
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Lemma 2.1 Let F be the bijective mapping F : bT ! T such that F (bx) = Bbx + x0 where

B is non-singular. If v 2 Hr(T ), r � 0, then bv = v Æ F 2 Hr(bT ) and there exists a positive

constant C = C(bT ; r) such that

jvjr;T � C kB�1kr j detBj1=2 jbvjr;bT ; (2.3)

jbvjr;bT � C kBkr j detBj�1=2 jvjr;T : (2.4)

Lemma 2.2 Let bI be the interpolation operator on the reference element. For m � 2, there
exists a positive constant C = C(r;m) such that

kbv � bIbvkr;bT � Cjbvjm;bT ; 8bv 2 Hr(bT ); 0 � r � m: (2.5)

Using the results of Lemma 2.1 and Lemma 2.2, we can derive the following interpolation
error estimate:

jv � Ivj1;T � C kB�1k j detBj1=2 jbv � bIbvj1;bT
� C kB�1k j detBj1=2 jbvjm;bT

� C kB�1k j detBj1=2 kBkm j detBj�1=2 jvjm;T

� C
�
kB�1k kBk

�
kBkm�1 jvjm;T : (2.6)

The above result highlights the fact that the norms kBk and kB�1k enter naturally in
the error bound on the right and are multiplicatively scaled by the Hm seminorm of v. We
note here that the condition number of B, �(B) = kB�1k kBk, appears in the right hand
side and is related to the geometric measure involving the inscribed and circumscribed circle
radii.

2.2 Explicit Residual Error Estimates

In this subsection, we consider the di�usion equation as a model problem to review the
methodology to derive error estimates in terms of the residual (see [40]). Let 
 be an open
bounded domain and �t a positive real number. The di�usion equation reads:

@tu = ��u; in 
� (0; �t); (2.7)

where � de�nes the viscosity. We shall also prescribe the following boundary and initial
conditions:

u(x; t) = 0; 8x 2 @
; 8t 2 (0; �t)

u(x; 0) = u0(x); 8x 2 
:
(2.8)
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The equivalent weak form of the di�usion problem is: Find u 2 L2(0; �t;V ) where V = H1
0 (
),

such that, for almost all t 2 (0; �t),

(@tu; v) = ��(ru;rv) 8v 2 V and u = u0 at t = 0: (2.9)

One requirement here is to solve the problem in an explicit manner, using, for example,
the forward Euler scheme. In this case, denoting the timestep �t = tn � tn�1, this reduces
to: Find un 2 V , n = 1; 2; : : : , such that, given u0

(un; v) = (un�1; v)��t �(run�1;rv); 8v 2 V: (2.10)

Then, applying the Galerkin approach and considering a conforming �nite element subspace
V h of V , we compute a �nite element solution unh 2 V h as follows: Given u0h, �nd u

n
h 2 V h,

n = 1; 2; : : : , such that

(unh; v) = (un�1h ; v)��t �(run�1h ;rv); 8v 2 V h;

where u0h is an L
2-projection of u0 on V h.

We now investigate the numerical error in unh due to the �nite element discretization. In
other words, we want to estimate the error en = un� unh. Replacing u

n by unh + en in (2.10),
the error is shown to be governed by the following equation:

(en; v) = Rh(v) +Re(v); 8v 2 V; (2.11)

where Rh and Re denote the residual functionals:

Rh(v) = � (unh � un�1h ; v)��t �(run�1h ;rv);

Re(v) = (en�1; v)��t �(ren�1;rv):

The residual Rh is identi�ed with the source of error due to the �nite element discretization,
while the residual Re describes the accumulation of error with time. In this project, we
are interested in the e�ect of Rh only, so that we look at the component of the error which
satis�es:

(en; v) = Rh(v): (2.12)

We assume here that the component due to the residual Re is kept small, using for example
an error control strategy during the whole solution procedure.

Following the standard approach used in elliptic problems, we decompose the residual
functional into elementwise contributions:

Rh(v) =
NeX
K=1

�t

Z

K

rKv dx+�t

Z
@
K

J;Kv ds (2.13)
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with rK and J;K denoting the interior and inter-element residuals:

rK = �
unh � un�1h

�t
+ ��un�1h

J;K =

(
� � n � run�1h if  2 @
K \ @


�
�

2

�
(n � run�1h )K + (n � run�1h )L

�
if  2 @
Kn@


where the subscript L stands for the element neighbor 
L sharing the edge  with 
K .

Then, observing that the residual Rh vanishes on V h, i.e., Rh(v) = 0, 8v 2 V h (or-
thogonality relation), and using standard interpolation estimates, we are able to derive the
following bounds:

(en; v) = �t
NeX
K=1

Z

K

rKv dx +

Z
@
K

J;Kvds

= �t
NeX
K=1

Z

K

rK(v � Ihv) dx+

Z
@
K

J;K(v � Ihv)ds

� �t
NeX
K=1

krKk0;Kkv � Ihvk0;K + kJ;Kk0;@Kkv � Ihvk0;@K

� C�t
NeX
K=1

krKk0;Kkvk0; eK + h
1=2
K kJ;Kk0;@Kkvk1; eK

� C�t
qPNe

K=1 krKk
2
0;K + hKkJ;Kk

2
0;@K �

q
kvk20 + kvk21

where C is a constant independent of h, e
K a patch of elements sharing one of the nodes
of 
K , and Ih, the interpolation operator with respect to the �nite element space V h (in
the previous subsection, the interpolation operator I was dedined on a single element). We
also point out that, here and elsewhere, we denote norms k�km;
K

as k�km;K for simplicity in
notation.

The next step in order to obtain an L2-norm error estimate would be to replace v by en

in the relation above, so that:

kenk20 = (en; en) � C�t
qPNe

K=1 krKk
2
0;K + hKkJ;Kk

2
0;@K �

q
kenk20 + kenk21:

Unfortunately, there is no immediate result which proves that kenk1 is bounded by kenk0.
Nevertheless, one remarks that the time discretization scheme is explicit in time and there-
fore should be conditionally stable. Actually, in order for the scheme to be stable, every
perturbation  2 V to a solution of (2.10) should satisfy the stability condition:

j j21 <
2

�t �
k k20: (2.14)
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If the error en is now viewed as a perturbation to the solution, it should then satisfy the
above stability condition in the sense that:

jenj21 <
2

�t �
kenk20: (2.15)

Hence, we get

kenk20 + kenk21 = 2kenk20 + jenj21 � 2kenk20 +
2

�t �
kenk20 � 2

�
1 + [�t �]�1

�
� kenk20;

so that

kenk0 � C�t
q
2
�
1 + [�t �]�1

�( NeX
K=1

krKk
2
0;K + hKkJ;Kk

2
0;@K

)1=2

: (2.16)

This provides us with an explicit error estimate in the L2-norm. In the case where the
space V h consists of continuous piecewise linear basis functions, the term �unh in the interior
residual rK naturally vanishes, so the predominant term in the indicator above should be
given by J;K. Since the term J;K is related to the inter-element uxes, this analysis suggests
the use of the edge ux-jump based or patch-recovery indicators described below.

2.3 Edge Flux-Jump Based Indicator

The rationale behind the ux-jump based indicator is that the inter-element uxes are in
general discontinuous. Indeed, most �nite element simulations use C0 approximations, for
which the �nite element solutions are piecewise continuous whereas their derivatives may be
discontinuous at the inter-element boundaries. Therefore a major source of the approxima-
tion error originates in the jumps in the normal ux or stress at each inter-element boundary
and, from the explicit residual error estimate, it seems reasonable to consider a measure of
these jumps as an error indicator.

The cost of such an indicator is relatively low as it is straightforward to compute the jump
in the stresses at the interface of two elements. Consider an element T and its neighbors Ti,
i = 1; 2; 3 (see Fig. 2). The jumps in the stresses are given by:

[�ni ] = �T;Ti � �Ti;T ; i = 1; 2; 3: (2.17)

An obvious choice for the error measure is to take the L2 norm of the jumps. We obtain an
error indicator on each element by equally distributing the quantity above among the two
elements sharing the edge, that is:

k[�n]k@
e =

 Z x2

x1

�
[�n1 ]

2

�2

ds+

Z x3

x2

�
[�n2 ]

2

�2

ds+

Z x1

x3

�
[�n3 ]

2

�2

ds

!1=2

: (2.18)
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Figure 2: Quantities involved in ux-jump indicators.

2.4 Patch-Recovery Indicator

This section outlines the implementation of a recovery post-processing type of error indi-
cators [48, 51]. Let uh be a continuous piecewise linear �nite element approximation of the
solution u of a given boundary-value problem. The objective is to calculate a continuous
piecewise linear vector function that will be an approximation of the gradient of u. More,
speci�cally, a recovery operator Gh is de�ned such that

Gh[uh] � ru:

Let xm de�ne one of the vertices of some element in the triangulation Th. First, we need
to identify the patch �m consisting of the elements having a vertex at xm; i.e.

�m = fK 2 Th : xm is a vertex of Kg ;

see Fig. 3. Now, let zK denote the barycenter of the element K and g a vector function
with piecewise linear components de�ned on �m; i.e.

g(x) =

�
a1x + b1y + c1
a2x + b2y + c2

�
:

The next step is to determine the coeÆcients ai; bi; ci, i = 1; 2, by calculating the discrete
least squares �t to the gradient of uh, sampled at the barycenters of all elements in the
patch �m. In other words, the coeÆcients form the unique set of values which minimize the
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Figure 3: The patch of elements �m.

functional:
G(g) =

X
K2�m

(g(zK)�ruh(zK))
2 :

Then the value of Gh[uh] at the node xm is set to be

Gh[uh](xm) = g(xm):

Applying the above procedure to all nodes in the triangulation provides the recovery operator
Gh[uh]. In the case where the node xm lies on the boundary of the domain, we may not
have enough neighbor elements; i.e., the discrete least squares �t may not provide a unique
solution. If so, we enlarge the patch by adding all elements that are vertex-neighbors to the
neighbors.

To obtain an error indicator, the recovery operator is employed as above to compute
a recovered stress. Then, the di�erence between the recovered stress b� and the stress �h
obtained from the �nite element approximation may be used to estimate the error. In the
later computations we use the von Mises stress. That is, we compute (b� � �h)vm on each
element, where the von Mises stress is de�ned as

�vm =
q
0:5 [(�x � �y)2 + (�x � �z)2 + (�y � �z)2] + 3(� 2xy + � 2xz + � 2yz):

The element indicator is then given by (b� � �h)vm measured in the L2-norm. Alternatively,
we could use the recovered stress b� and strain b� to compute an energy type error indicator

�2K =

Z
K

(b� � �h)(b�� �h) dx;

and stipulate that �K � kekK.
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3 Element Deformation and Shape Control

Element shape distortion, due to either mesh motion or mesh adaption, often degrades the
accuracy in numerical approximations, as well as the eÆciency and reliability of simulations.
For example, it is well known that triangles or tetrahedra with large obtuse angles have
inferior approximation properties. Slender elements and sudden mesh size gradations also
lead to ill-conditioning problems and severe restrictions on the timestep. This latter issue is
particularly relevant in the context of explicit Lagrangian impact problems. Element shape
quality is thus becoming a research topic of growing importance. Recently, several choices of
shape quality metrics have been proposed which aim at quantifying the element distortion.
These include maximum and minimum angles, ratio of incircle to circumcircle diameters,
ratios involving edge lengths and element areas in two dimensions. We refer the reader
to [16, 25] for more details.

In standard �nite element implementations, elements in the physical domain are images
of a reference element via mappings. The most frequently used mappings are the parametric
mappings which employ the same element basis functions as in the �nite element approxi-
mation, with the nodes regularly spaced on the reference element. If the map is not aÆne,
when dealing, for instance, with quadrilateral elements or curvilinear elements, the map
is not necessarily bijective. This is observed, for instance, when elements in the physical
domain have re-entrant corners. On the other hand, the mappings in the case of triangles
with straight edges are always invertible provided the elements are not degenerate (the node
points cannot be aligned). In this case, one can use the Jacobian of the transformation and
of its inverse to characterize the distortion resulting from the maps to and from the reference
element. We elaborate on this point below and extend the idea to the analysis of transient
deforming mesh problems. We remark here that the Jacobian matrix, its determinant as
well as particular matrix norms, were actually used in [25] to study the e�ect of distortion
and mesh quality issues.

Although the issue of element shape quality is present in mesh adaption, for example
when the nodes of the mesh are redistributed in order to equidistribute the numerical error,
this issue is even more acute for Lagrangian simulations. In this instance, the grid points
are allowed to move, while retaining the connectivity, and one has to make sure that the
triangles do not overlap one another or do not get folded with reversed node numbering due
to edge tangling. Even if there is no tangling, we still need to control the time evolution
of the elements to avoid ill-shaped or degenerate elements. To date, several metrics have
been proposed in the literature and have been the subject of recent studies [15, 45, 50]. In
particular, the following were studied in [16] for an investigation on grid degeneracy arising
in adaptive re�nement of tetrahedra:
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fW =
minimum distance from the centroid of the element to the faces

length of the longest edge
(3.19)

fS =
volume of the element

(length of the longest edge)d
(3.20)

� =
radius of the inscribed sphere

radius of the circumsphere
(3.21)

where d is the space dimension.

More recently, mesh quality indicators have been examined in terms of objective func-
tions for attaining valid, high quality meshes in the framework of three-dimensional mesh
optimization [25]. The approach uses element Jacobian and matrix norms to build suitable
three-dimensional objective functions. It is also shown that some relations between objective
functions in dimension two do not hold in dimension three. Although the most logical choice
is to de�ne non-dimensional objective functions, those have barriers in the sense that they
become in�nite for a certain set of matrices. One attractive choice is to use the element
condition number:

�(B) = kBkF kB
�1kF ; (3.22)

where B, as in Section 2.1 represents the Jacobian of the mapping from the reference elementbT to the element in the physical domain T . In (3.22), the norm k � kF is called the Frobenius
matrix norm and is de�ned as:

kBkF =
�
tr(BTB)

�1=2
:

It is argued that minimizing the condition number of B (within the framework of mesh
optimization) seems an appropriate choice as it measures the distance of B from the set of
singular matrices. Interestingly, we observe that a term similar to the condition number of
B appears in the derivation of the interpolation error estimates (2.6), which justi�es the use
of the element condition number as a mesh quality measure.

Most previous work using shape indicators has focussed on the static grid problem. In this
case, unstructured meshes with poorly shaped elements may be generated through adaptive
re�nement based on error estimates. The mesh can be improved using edge/face swaps in a
Delaunay scheme or smoothing with node redistribution.

In the case of the Lagrangian impact analysis, element distortion is also caused by the
evolution of the solution to follow speci�c features, by the change in the domain and its
boundary, and by displacement of the nodes resulting from the Lagrangian formulation. In
such situations, one may also be interested in the rate at which the local quality of any
element is deteriorating (essentially a look ahead issue). A similar issue can be raised with
respect to repeated local re�nements. This suggests that one may want to control both the
mesh at a given time as well as the rate of change of the local cell quality after one timestep.
This latter point may be crucial when the nodes move rapidly within one timestep. This
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idea is explored later in the numerical studies of hybrid indicators by relating the relative
velocity of the nodes to the rate of change of the local mapping. Accordingly, in the present
work, we restrict our attention to shape quality indicators based on the map and its local
rate of change.

Remark The acceptability of an element with a given shape seems to be problem dependent
as well as perhaps method dependent. This is certainly true when \ill-shaped" elements are
in parts of the domain where the behavior of the solution is rather benign. Examples of such
grids are actually common in the \moving grid" literature [32]. Therefore, in the context of
numerical approximation, the concept of shape quality indicator is itself awed. Moreover, an
error indicator computed using local approximation of the solution should implicitly encom-
pass the e�ect of element shape on the error. This is more than an issue of semantics and it
serves to emphasize that the error in this context can not be separated into its contributing
sources so our constructions of hybrid indicators should be viewed in this pessimistic light.

On the other hand, it is not unreasonable to argue that the occurrence of a large error
or large value of an error indicator on a poorly shaped cell bears further scrutiny. Maybe
the local element quality indicator and the local error indicator should be examined sepa-
rately. This is part of the motivation for the additive hybrid indicator considered later. The
multiplicative indicator is suggested formally from the structure of the interpolation error
estimate and the entry of the forward and reverse maps in the coeÆcient of the estimate.
Finally, the e�ect of the shape and size of the element may be more important in relation to
solver eÆciency and ill-shaped elements detected and corrected for this reason alone.

3.1 Growth of Shape Error

We consider here another issue of interest, namely the motion of nodes which often result
in mesh tangling. It may be desirable to avoid tangling either by considering a penalty
approach, or, by underrelaxing the mesh motion selecting only a fraction of the predicted
deformation step. Estimating the local rate of deformation would help to ascertain which
elements are deforming rapidly and take appropriate action. One such indicator can be
obtained by computing the rate of change of the Jacobian matrix with respect to time.

Using the simple geometric shape quality measure � given in (3.21), we show how to cal-
culate its rate of change, denoted subsequently by _�, for any element in the mesh. We expect
this measure to inform us about the elements which are rapidly deteriorating. Moreover,
integrating through a timestep, we have the approximation at the end of the step for the
shape quality indicator.

When the elements change their shape with time, as in Lagrangian simulations, the
mappings F become a function of time, that is F = F (t). Therefore, the variation of kBk
and kB�1k indicates how the element shape changes and should provide a relevant indicator
of element deterioration. We believe that an error indicator for Lagrangian simulations
should include measures of kBk and kB�1k as well as their growth. We now develop such
an indicator.
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Figure 4: Successive maps de�ning a deforming �nite element at times tn and tn+1.

Let T n and T n+1 represent two con�gurations of an element at the successive times tn

and tn+1 as shown in Fig. 4. At any time, the entries of the matrix B(t) are given by bij(t) as
in (2.2). From the Taylor series representation, we know that there exists a time � 2 [tn; tn+1]
such that:

bi;j(t
n+1) = bi;j(t

n) + �t _bi;j(�);

where �t denotes the timestep, i.e. �t = tn+1� tn. Then, using any matrix norm, we have:

kBn+1k � kBnk+�t max
t2[tn;tn+1]

(j _x2 � _x1j; j _x3 � _x1j; j _y2 � _y1j; j _y3 � _y1j) : (3.23)

The interpolation error estimate (2.6) together with (3.23) leads to the following result:

Theorem 3.1 Let T n and T n+1 denote a same element at times tn and tn+1 de�ned by
the aÆne maps F n and F n+1 from a reference element bT given by (2.1) with corresponding
matrices Bn and Bn+1. Let v 2 Hr(T n+1) and I denote the �nite element interpolation
operator as de�ned in Section 2.1. Then the interpolation error v � Iv satis�es

jv � Ivj1;Tn+1 � C k(Bn+1)�1k kBn+1k

�

�
kBnk+�t max

t2[tn;tn+1]
(j _x2 � _x1j; j _x3 � _x1j; j _y2 � _y1j; j _y3 � _y1j)

�
� kvk2;Tn+1

(3.24)

where C is independent of the shape of the element. The quantities _xi, _yi, i = 1; 2; 3, in (3.24)
denote the x and y velocity components of the element vertices.
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The �rst factor on the right in (3.24) is precisely the quality measure advocated in [25]
that is based on the element condition number shape matrix. The second factor involves the
relative velocities in (3.23) and can be interpreted as an indicator of the rate of change of
the element shape.

We now explore several possibilities for determining error and shape quality indicators.
These are (1) an indicator based on relative velocities, (2) an additive hybrid indicator and
(3) a multiplicative hybrid indicator.

3.2 RVS Indicator

The �rst re�nement/error indicator we implement is based on characterizing the interpolation
error due to mesh distortion as outlined above. It may alternatively be motivated from simple
physical reasoning. Large and rapid mesh deformation is the primary diÆculty when dealing
with Lagrangian impact simulations and can cause computation breakdowns or simply large
errors. Therefore an e�ective precursor to such deformations will be an indicator for guiding
mesh re�nement/unre�nement. From the form of the bounds in (3.23) and (3.24), the
relative velocity of the adjacent nodes can be used as an indicator of change in shape quality.
Rather than the maximum on [tn; tn+1], one may consider other norms at either tn or tn+1

in practice. We consider below the Euclidean norm of the relative velocities based on the
relative velocities of the nodes on the respective sides of the element. Then, computing the
sum of each nodal indicators for each element will provide a simple predictor of distortion
error for large mesh deformation. For the typical element T shown in Fig. 5, with associated
nodes N1, N2 and N3, we then de�ne
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RV12 =
p
( _x2 � _x1)2 + ( _y2 � _y1)2

RV23 =
p
( _x3 � _x2)2 + ( _y3 � _y2)2

RV31 =
p
( _x1 � _x3)2 + ( _y1 � _y3)2

(3.25)

and

RVS = RV12 +RV23 +RV31: (3.26)

The quantity RVS is clearly a look ahead indicator for evolving large mesh deformations. This
indicator is actually similar in spirit to the indicators proposed in [8, 14].

3.3 Additive and Multiplicative Hybrid Indicators

One goal in the present work is to control the approximation error and the element shape
quality simultaneously. This can, of course, be done sequentially in a simulation step {
checking the error indicators to guide mesh re�nement and coarsening and then the element
shape indicators to guide node smoothing and local modi�cation of the mesh. This may
indeed be the preferred approach. However, it is also possible to construct various hybrid
indicators that combine the above indicators into a single metric. Since the strategies for
improving the grid in these respective situations are di�erent it is debatable whether such a
hybrid approach has merit. Our work here on this issue should be regarded as exploratory
in this sense.

Conceptually, the idea may be thought of in a similar way to grid optimization strategies
which use an objective function that has several weighted mesh attributes [12, 15, 39]. Like-
wise, in hybrid indicators, we attempt to combine the bene�ts of the two previous types of
indicators using appropriate scaled and weighted combinations. We consider both an addi-
tive and a multiplicative hybrid indicator. In some respects the latter is more natural from
the form of the interpolation estimate described earlier in (3.24), where the multiplicative
coeÆcients depend on the maps that are evolving in time and characterize the deformation.
On the other hand, the additive form is closer to the weighted average in the optimization
problems mentioned above.

Additive Combination

In the additive combination, we construct the re�nement indicator for the element 
e

using a linear combination of the two previously de�ned relative velocities and ux-jump
indicators:

He = �
(RVS)e
(RVS)max

+ �
k[�n]k@
e
k[�n]k@
emax

(3.27)

where �; � are empirically chosen scalars and the maximum values over the entire grid are
used for normalization.
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Multiplicative Combination

In the multiplicative combination, the re�nement indicator is obtained as the product of
the RVS and ux-jump indicators at the element level. We can write this indicator as

Ee =
(RVS)e
(RVS)max

�
k[�n]k@
e
k[�n]k@
emax

(3.28)

Both hybrid indicators are tested in the Lagrangian impact simulations.

4 Numerical Studies

4.1 Application and Formulation

Consider a body occupying a reference con�guration 
n at time tn and loaded incrementally
over the timestep �t to change the deformation dn to dn+1 = dn+u at tn+1 = tn+�t. Here
u 2 V , the space of kinematically admissible displacements. The incremental variational
form of the equilibrium equation obtained using the virtual work principle is: Find u 2 V
satisfying the essential boundary conditions and initial conditions such thatZ


n
�n+1(u) : r0v dx�

Z

n
(fn+1 � �nan+1) � v dx�

Z
@
n

gn+1 � v ds = 0; 8v 2 V;

(4.29)

where �n+1 is the �rst Piola-Kircho� stress tensor at time tn+1 and fn+1, an+1, gn+1 are the
corresponding body force, acceleration and traction; �n is the mass density in the reference
con�guration, v 2 V is the admissible virtual displacement and r0 is the material gradient.
A �nite element discretization of (4.29) leads to the approximate problem: Find uh 2 Vh
satisfying the prescribed boundary and initial conditions such thatZ

n
�n+1(uh) : r0vh dx�

Z

n
(fn+1 � �nan+1) � vh dx�

Z
@
n

gn+1 � vh ds = 0; 8vh 2 Vh;

(4.30)

with Vh a conforming �nite element of V .

Denoting the error e = u� uh, e 2 V , and using integration by parts on each element, it
follows from (4.29) and (4.30) that for all v 2 VZ


n
�n+1(e) : r0v dx =

Z

n
(fn+1 � �nan+1) � v dx

�

Z

n
�n+1(uh) : r0v dx+

Z
@
n

gn+1 � v ds

=
X
K2P

Z
K

rK(uh) � v dx+
X
2E

Z


J(uh) � v ds
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where rK denotes the element interior residual in terms of uh and J is the jump in the
normal stresses J(uh) = [�] � n = [�n]. Here, the set E denotes the union of all element
interfaces.

The stresses �n+1(u) are computed from the primary variable u by considering its hydro-
static and deviatoric components. The hydrostatic part is usually obtained using an equation
of state and the deviatoric part from a constitutive law. For example, typical equations of
state and constitutive models for metals at low temperatures are:

p� pref = �� (ei � eiref) (4.31)

and c_Sij = 2� _eij (4.32)

Sij =

8>>><>>>:
cSij if cSklcSkl < 2Y 2=3r
2

3
Y

cSijcSklcSkl if cSklcSkl � 2Y 2=3

(4.33)

where (4.31) is the Mie-Gruniesen equation of state and (4.33) is the so-called radial return
formulation for elastic-plastic deformation. Here, p is the pressure, ei the internal energy, �
the Gruniesen coeÆcient, S and e the deviatoric stress and strain, � the shear modulus and
Y the yield stress.

Equation (4.30) can be rewritten in matrix form as

Man+1 + F n+1
int = F n+1

ext (4.34)

where F n+1
ext is due to applied body forces and tractions and F n+1

int arises from the internal
stresses.

The equations of motion are integrated explicitly using the lumped mass matrix approach.
Therefore, given the initial velocities and displacements, the velocities and displacements
at the next time step are computed using a simple vector-vector multiplication. At each
time step, only the element strains and stresses, nodal forces and accelerations need to be
integrated to obtain F n+1

ext and F n+1
int . Complex non-linear constitutive models and equations

of state are easily incorporated in this cycle. Moving slide lines are used to account for
contacting surfaces. Elements are judged to have failed based on an appropriate physical
criteria such as equivalent plastic strain. Failed elements are removed from the simulation in
a process called erosion. This is the basic solution process for most explicit dynamics codes,
such as EPIC described below.

4.2 Lagrangian simulations and Results with EPIC

The EPIC code, developed by Johnson et al. [23, 24], uses an explicit Lagrangian �nite
element formulation. The code has been used and continually upgraded over the last two
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decades. It is by now well tested and its capabilities and limitations well known. Access to
a research version of the source code, its simple data structure and robust computational
algorithm make it an attractive choice for our preliminary studies.

The �rst challenge of solution based adaptivity using �nite element codes is the design
of a data structure capable of supporting the creation and deletion of new elements. The
EPIC code and most Lagrangian codes designed for simulation of high velocity impact in-
clude the capabilities of element erosion and re-zoning. These features form the basis for
designing the extensions necessary to perform automatic element creation and deletion. In
particular, the code allows us to exclude elements from a simulation, to delete elements that
are marked for re�nement, and to add new elements and nodes at the bottom of the list of
existing elements and nodes. While this is suÆcient for the present work, support of eÆcient
solution adaptive codes will require a dynamic data structure with the ability to allocate and
deallocate memory as needed. Furthermore, the tree structure, implicit in many adaptive
re�nement codes, will have to be maintained to implement coarsening by unre�nement. This
capability is essential for wave propagation type problems such as those of interest in these
applications.

Adaptivity and error estimation require frequent reference to information from neighbor-
ing elements. Indeed, neighbors often need to be re�ned in order to produce conforming
meshes, while information from the neighbors is also required when computing error indica-
tors such as the ux-jump based or patch recovery indicators. The EPIC code was augmented
to provide this functionality. Additional data structures were created to store lists of ele-
ments associated with each node. The neighbors of an element are eÆciently retrieved from
this information only.

Since the EPIC code lacks the ability to support hanging nodes, only conforming meshes
are allowed. In consequence, neighbors of an element targeted for re�nement often need to
be re�ned as well, and so on in a recursive fashion. We will consider three types of re�nement
on the triangles used to construct the meshes in our test problems. These are shown in Fig. 6
where shaded triangles represent the elements which need to be re�ned. Type I re�nement is
used when the element to be re�ned and its neighbor both share their longest edge, so that
it is a simple matter to re�ne them both. In the case where the element and its neighbor
do not share the longest edge, we allow the re�nement to propagate through the mesh. We
split the longest edge of the neighbor and enforce a split on its neighbor. We then split the
neighbor in three and original element in two. We designate this re�nement Type II. This
restriction to only two levels is indeed somewhat ad-hoc but keeps the program complexity
manageable and alleviate the lack of data-structure support. In the third type of re�nement,
called Type III, an element is split in three by joining its centroid to each node. However, the
child elements get worse aspect ratios than the parent element with this type of re�nement.

Once an element is re�ned, the nodal and elementwise values of various solution quantities
are interpolated through simple schemes on the new nodes and elements. Interpolation
routines are part of the re-zoning capability of the EPIC code. Since new elements are
created by splitting old elements, they inherit all element level state variables from the
parent element. Nodes derive their state variables from parent elements or nodes.

19



bisection of largest edge

Type I refinement Type II refinement Type III refinement
Bisection of largest edge Two level recursive slpit into three

Initial mesh

Figure 6: Types of re�nement allowed.

Unlike re�nement, removing elements to improve the geometry of the remaining elements
is rather a complex operation. The classical way of removing elements in a zone and replacing
them with a new local remesh called rezoning has been a part of EPIC and similar Lagrangian
codes. We experiment here with a slightly di�erent approach. We only allow a few types of
local unre�nement where only elements and immediate neighbors are a�ected (see Fig. 7).
Unre�nement is triggered by the same element based measures used for re�nement. A more
systematic unre�nement scheme where the size of patch to unre�ne is determined adaptively
will be undertaken in future work.

Finally, the adaptive strategy to be utilized consists of a simple �xed fraction re�nement
approach, i.e., the elements with re�nement indicators in the top 20 or 30 percent are re�ned
after each 25 percent of total simulation time. A better approach would be to trigger
re�nement when the error indicator exceeds preset tolerances. We are developing better
targeted re�nement strategies [35] where the error is spatially equidistributed and re�nement
is monitored to obtain a desired error level.

Numerical results

We have implemented the above re�nement indicators and adaptive strategies for the
simulation of the classical Taylor-Anvil impact quality test for a cylinder of iron striking a
rigid surface (Fig. 8). The initial velocity of the cylinder is set at 152.4 m/s. We show a
progressive sequence of results over a time period of 10�5 seconds. The initial mesh and
geometry are shown in Fig. 8. In this �rst test the RVS indicator and re�nement strategy
are applied. Fig. 9 shows the deformed geometry, the values of the re�nement indicator,
the plastic strain distribution, and the corresponding adapted mesh at 10�5 seconds. This
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Initial mesh

Figure 7: Types of coarsening allowed.

strategy adds 32 nodes and 155 new elements and we observe that the mesh is essentially
re�ned in the region where maximum element distortion is experienced. However, the plots
of plastic strain indicate that the highly strained region in the bottom outer zone of the
cylinder does not see much re�nement.

In the next test, we use the ux jump indicator and the �xed fraction re�nement strategy
with top 30 percent of the elements being re�ned. The computations are again carried out
over the same time period of 10�5 seconds. The results of this simulation are shown in
Fig. 10, i.e., the adapted meshes, the contours of k[�n]k@
e and the plastic strain distribution
obtained at 10�5 seconds.

In the third set of tests, we use the additive hybrid indicator He with � = � = 1 and
re�nement triggered whenever He > 1. In Fig. 11, we show the adapted meshes, contours
of k[�n]k@
e and RVS at 10�5 seconds. This indicator and strategy add 55 nodes and 201
elements. We observe that the re�nements are now distributed more evenly.

In the fourth set of tests, we use the hybrid indicator Ee with re�nement triggered
whenever Ee > 0:3. This indicator and strategy add 55 nodes and 201 elements. The
re�nements are now distributed more evenly.

In the next set of results, we investigate the performance of the patch-recovery error
indicator described in Section 2.4. Fig. 13 shows the error indicators obtained and re�nement
at the time 2:25� 10�5 and 3:0� 10�5 seconds. Re�nement patterns are similar to the other
indicators.

Finally, we combine re�nement and unre�nement and look at its e�ect on the element
aspect ratios. The objective is to examine how the mesh quality would improve. In Fig. 14,
we see that the average aspect ratio is now dramatically improved, but not the minimum
aspect ratio. This is due to the re�nement/unre�nement strategy rather than the error
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Figure 8: Initial mesh for cylindrical rod impacting rigid surface
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Figure 9: Mesh and contours of RVS and plastic strain for a cylindrical iron rod impacting
rigid surface at 10�5 seconds after multiple adaption cycles using the RVS indicator. Rod
initial velocity is 152.4 m/s.
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Figure 10: Mesh and contours of ux jump and plastic strain for a cylindrical iron rod
impacting rigid surface at 10�5 seconds after multiple adaption cycles using the ux jump
indicator. Rod initial velocity is 152.4 m/s.
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Figure 11: Mesh and contours of RVS and ux jump at 10�5 seconds for a cylindrical iron rod
impacting rigid surface after multiple adaption cycles using the additive hybrid indicator.
Rod initial velocity is 152.4m/s.
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Figure 12: Mesh and contours of RVS and ux jump at 10�5 seconds for a cylindrical iron
rod impacting rigid surface after multiple adaption cycles using the multiplicative hybrid
indicator. Rod initial velocity is 152.4m/s.

(2D)  18 Dec 1998 POST-ADAPTION DATA

0 0.1 0.2 0.3
X

0

0.1

0.2

0.3

Z

FLXJMP
1.2112E+06
967707
724217
480728
237239

-6250.67
-249740
-493229
-736719
-980208
-1.2237E+06
-1.46719E+06
-1.71068E+06
-1.95417E+06
-2.19766E+06

(2D)  18 Dec 1998 POST-ADAPTION DATA (2D)  18 Dec 1998 EXAMPLE 601 - 2D CYLINDER IMPA

0 0.1 0.2 0.3
X

0

0.1

0.2

0.3

Z

FLXJMP
1.2112E+06
967707
724217
480728
237239

-6250.67
-249740
-493229
-736719
-980208
-1.2237E+06
-1.46719E+06
-1.71068E+06
-1.95417E+06
-2.19766E+06

(2D)  18 Dec 1998 EXAMPLE 601 - 2D CYLINDER IMPA

Figure 13: Contours of adapted mesh and energy associated with ZZ type error indicator at
2:25� 10�5 and 3:0� 10�5 seconds. Rod initial velocity is 203.2 m/s.

24



(XY)  18 Mar 1999 

0 5E-06 1E-05 1.5E-05
Time in sec

0

0.1

0.2

0.3

0.4

0.5

A
sp

ec
tR

at
io

Avg. Aspect Ratio with ref/unref
Min. Aspect Ratio with ref/unref

(XY)  18 Mar 1999 

0 5E-06 1E-05 1.5E-05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Avg. Aspect Ratio no ref/unref

(XY)  18 Mar 1999 

Figure 14: Aspect ratios as the mesh is re�ned and unre�ned.

indicators, since in each case the element with the minimum aspect ratio was identi�ed as a
target but not modi�ed due to the re�nement constraints.

4.3 Eulerian Simulations and Results with CTH

As a further test of applicability of adaptive mesh re�nement to penetration and impact sim-
ulations, we have implemented the capability for basic adaptivity into the Eulerian impact
physics code CTH. The adaptive strategy is a block-scheme, with the mesh resolution for
adjacent blocks strictly limited to 2 :1 ratios. A considerable portion of this e�ort has been
involved in the development of supporting algorithms for the treatment of multi-material
elements, including block adaptive advection [30] and multi-material re�nement [31], as well
as the parallel implementation and block-to-block communication [17]. As such, implemen-
tation of realistic error indicators, or a test of a variety of indicators, as was shown with
the Lagrangian results, has not yet been performed. Nevertheless, preliminary calculations,
which have been carried out as part of the code development and veri�cation testing process,
have yielded impressive results.

Examples from one of these simulations are shown in Fig. 15, where the propagation of
a two-dimensional blast wave through air is shown. The simulation took 1.8 CPU hours to
complete. A corresponding uniform mesh version of this problem was also run; it produced
almost identical results to the ones shown here but required 145 CPU hours to complete.

A second example is shown in Fig. 16, where the impact of an aluminum sphere at 5 km/s
on an aluminum plate is shown. Re�nement and unre�nement is seen so that the highest
resolution mesh follows the fragments.
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(a) (b)

(c) (d)

Figure 15: Sample calculation of a two-dimensional blast wave propagating through air and
reecting o� rigid walls, showing (a) mesh blocks at 6:5 ms, (b) pressure at 6:5 ms, (c) mesh
blocks at 29 ms and (d) pressure at 29 ms. This calculation was run in 1.8 CPU hours, a
comparable uniform mesh version of this simulation required 145 CPU hours.
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(a) (b)

(c)

Figure 16: Simulation of the impact of an aluminum sphere onto an aluminum plate at 5
km/s, showing (a) initial con�guration of materials and mesh blocks, (b) materials and mesh
blocks at 2:6�s and (c) materials and mesh blocks at 9:2�s.
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5 Concluding Remarks

In this work we have described studies on the problem of simultaneously controlling the error
in the approximate solution (by adaptive re�nement or coarsening) and controlling the shape
quality of the elements. The latter point is a topic of current interest in many application
areas where the element quality may degrade during computation as a result of repeated
re�nement or grid deformation. The target applications considered here are Lagrangian and
Eulerian impact calculations since they represent a demanding class of problems that involve
both issues { the need to adaptively re�ne the mesh and the presence of deforming elements.
Another point of interest here is the need to provide appropriate error indicators that can be
used in conjunction with legacy or proprietary code where access at the level of the physics
or element detail may be limited. For this reason, we chose to essentially focus on error
indicators that have this property while using the research version codes EPIC and CTH.
The work on error and shape control includes some exploratory studies of hybrid indicators
of additive or multiplicative type.

In this paper we have discussed several simple error indicators and adaptive strategies.
Our preliminary results show that adapted meshes which improve the performance of the
simulations have been obtained. In particular, the average aspect ratio, which is a simple
measure of the mesh quality, is much improved. We have also established a sound technique
for quantifying the errors due to mesh distortion using basic approximation theory and used
it both singly and in combination with other estimators.

However, much remains to be done to use these indicators and strategies on realistic
impact simulations. Principal among the tasks that need to be accomplished are the design
of a dynamic data structure capable of supporting creation and deletion of arbitrary sets of
elements, the implementation of mesh smoothing and local remeshing algorithms to augment
element re�nement and coarsening, the development of more reliable error estimators that
account for the complex material behavior, a study of the interaction between adaptivity
and di�erent contact algorithms, and �nally, the integration of mesh re�nement, remeshing
and smoothing with various error indicators into an adequate choice of techniques based on
the di�erent indicators.
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